skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Walker, M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Cosmic rays and solar energetic particles pose significant risks to satellites, space stations, and human space exploration. They also produce atmospheric radiocarbon (14C), which enters the carbon cycle and is recorded by paleoenvironmental proxies. Miyake events, rapid increases in atmospheric14C, first identified in annual tree rings and later confirmed through ice core10Be and36Cl isotopes, are thought to result from extreme solar activity, are seven events identified over the last 14,300 years. However, uncertainty in annual14C measurements limits precise inferences about their timing and magnitude. This study examines uncertainties in14C during two Miyake events (774 CE and 993 CE) across trees with differing uptake, storage, and allocation of carbon. We hypothesize that tree species physiology affects tree‐ring Δ14C, with deciduous species recording lagged, attenuated tree‐ring Δ14C relative to evergreen species. Using Δ14C data from pine and larch in Mongolia and a larger multi‐species Northern Hemisphere data set, we employed a Bayesian framework to estimate the timing, duration, and magnitude of these two events. Our AMS results showed no differences in Δ14C between evergreen and deciduous species growing at similar sites during the 774 CE event. The 993 CE event was variable, but parameter estimates were consistent between species. Northern Hemisphere comparisons indicated that annual series of Δ14C from evergreen and deciduous conifers yielded relatively more precise modeled estimates of start date and duration relative to deciduous broadleaf species. Future studies should consider the role of species‐specific carbon allocation strategies and storage dynamics in determining the radiocarbon response to Miyake events. 
    more » « less
  2. Polyurethanes (PU) make up a large portion of commodity plastics appearing in applications including insulation, footwear, and memory foam mattresses. 
    more » « less
  3. The generation of shaped laser beams, or structured light, is of interest in a wide range of fields, from microscopy to fundamental physics. There are several ways to make shaped beams, most commonly using spatial light modulators comprised of pixels of liquid crystals. These methods have limitations on the wavelength, pulse duration, and average power that can be used. Here we present a method to generate shaped light that can be used at any wavelength from the UV to IR, on ultrafast pulses, and a large range of optical powers. By exploiting the frequency difference between higher-order modes, a result of the Gouy phase, and cavity mode matching, we can selectively couple into a variety of pure and composite higher-order modes. Optical cavities are used as a spatial filter and then combined with sum-frequency generation in a nonlinear crystal as the output coupler to the cavity to create ultrafast, frequency comb structured light. 
    more » « less
  4. Plastic upcycling, which involves making plastic-derived products with unique or improved properties from discarded plastic materials, is a promising alternative to recycling and disposal to help reduce the overall production of waste. However, recycled and reused materials typically have inferior mechanical, thermal, optical, and barrier properties compared with virgin plastics. Upcycled plastic materials could improve these properties while addressing future waste accumulation. In this study, we use waste poly(ethylene terephthalate) (PET) collected from disposable food packaging to create a repurposed plastic graphene oxide (GO) composite with a goal of upcycling. We developed a one-pot “dynamic depolymerization” to break down PET in the presence of GO and successfully enabled transesterification of the polymer onto GO. Covalent attachment of PET onto GO and tailorable plastic content was confirmed by thermogravimetric analysis, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy. These covalent composites (PET-GO) were found to be relatively impermeable to water vapor, showing promise for applications in packaging materials. Aqueous degradation experiments on the composite materials demonstrated that, in bulk conditions, PET-GOs remain mechanically robust while in contact with water over appropriate time scales for packaging applications, while beginning to break down in accelerated conditions. The use of depolymerization methods to promote polymer grafting concurrently with polymer deconstruction could provide a more general method for grafting waste polymers onto oxidized carbonaceous substrates with further study. 
    more » « less
  5. Abstract Bioactive degradable scaffolds that facilitate bone healing while fighting off initial bacterial infection have the potential to change established strategies of dealing with traumatic bone injuries. To achieve this a composite material made from calcium phosphate graphene (CaPG), and MXene was synthesized. CaPG was created by functionalizing graphene oxide with phosphate groups in the presence of CaBr with a Lewis acid catalyst. Through this transformation, Ca2+and PO43−inducerons are released as the material degrades thereby aiding in the process of osteogenesis. The 2D MXene sheets, which have shown to have antibacterial properties, were made by etching the Al from a layered Ti3AlC2(MAX phase) using HF. The hot‐pressed scaffolds made of these materials were designed to combat the possibility of infection during initial surgery and failure of osteogenesis to occur. These two failure modes account for a large percentage of issues that can arise during the treatment of traumatic bone injuries. These scaffolds were able to retain induceron‐eluting properties in various weight percentages and bring about osteogenesis with CaPG alone and 2 wt% MXene scaffolds demonstrating increased osteogenic activity as compared to no treatment. Additionally, added MXene provided antibacterial properties that could be seen at as little as 2 wt%. This CaPG and MXene composite provides a possible avenue for developing osteogenic, antibacterial materials for treating bone injuries. 
    more » « less
  6. Abstract FeSe1−xSxremains one of the most enigmatic systems of Fe-based superconductors. While much is known about the orthorhombic parent compound, FeSe, the tetragonal samples, FeSe1−xSxwithx > 0.17, remain relatively unexplored. Here, we provide an in-depth investigation of the electronic states of tetragonal FeSe0.81S0.19, using scanning tunneling microscopy and spectroscopy (STM/S) measurements, supported by angle-resolved photoemission spectroscopy (ARPES) and theoretical modeling. We analyze modulations of the local density of states (LDOS) near and away from Fe vacancy defects separately and identify quasiparticle interference (QPI) signals originating from multiple regions of the Brillouin zone, including the bands at the zone corners. We also observe that QPI signals coexist with a much stronger LDOS modulation for states near the Fermi level whose period is independent of energy. Our measurements further reveal that this strong pattern appears in the STS measurements as short range stripe patterns that are locally two-fold symmetric. Since these stripe patterns coexist with four-fold symmetric QPI around Fe-vacancies, the origin of their local two-fold symmetry must be distinct from that of nematic states in orthorhombic samples. We explore several aspects related to the stripes, such as the role of S and Fe-vacancy defects, and whether they can be explained by QPI. We consider the possibility that the observed stripe patterns may represent incipient charge order correlations, similar to those observed in the cuprates. 
    more » « less
  7. Chiang, Tzen-Yuh (Ed.)
    Pierce’s disease (PD) caused by the bacterium Xylella fastidiosa is a deadly disease of grapevines. This study used 20 SSR markers to genotype 326 accessions of grape species collected from the southeastern and southwestern United States, Mexico and Costa Rica. Two hundred sixty-six of these accessions, and an additional 12 PD resistant hybrid cultivars developed from southeastern US grape species, were evaluated for PD resistance. Disease resistance was evaluated by quantifying the level of bacteria in stems and measuring PD symptoms on the canes and leaves. Both Bayesian clustering and principal coordinate analyses identified two groups with an east-west divide: group 1 consisted of grape species from the southeastern US and Mexico, and group 2 consisted of accessions collected from the southwestern US and Mexico. The Sierra Madre Oriental mountain range appeared to be a phylogeographic barrier. The state of Texas was identified as a potential hybridization zone. The hierarchal STRUCTURE analysis on each group showed clustering of unique grape species. An east-west divide was also observed for PD resistance. With the exception of Vitis candicans and V . cinerea accessions collected from Mexico, all other grape species as well as the resistant southeastern hybrid cultivars were susceptible to the disease. Southwestern US grape accessions from drier desert regions showed stronger resistance to the disease. Strong PD resistance was observed within three distinct genetic clusters of V . arizonica which is adapted to drier environments and hybridizes freely with other species across its wide range. 
    more » « less
  8. ABSTRACT We present a low-frequency (170–200 MHz) search for prompt radio emission associated with the long GRB 210419A using the rapid-response mode of the Murchison Widefield Array (MWA), triggering observations with the Voltage Capture System for the first time. The MWA began observing GRB 210419A within 89 s of its detection by Swift, enabling us to capture any dispersion delayed signal emitted by this gamma-ray burst (GRB) for a typical range of redshifts. We conducted a standard single pulse search with a temporal and spectral resolution of $$100\, \mu$$s and 10 kHz over a broad range of dispersion measures from 1 to $$5000\, \text{pc}\, \text{cm}^{-3}$$, but none were detected. However, fluence upper limits of 77–224 Jy ms derived over a pulse width of 0.5–10 ms and a redshift of 0.6 < z < 4 are some of the most stringent at low radio frequencies. We compared these fluence limits to the GRB jet–interstellar medium interaction model, placing constraints on the fraction of magnetic energy (ϵB ≲ [0.05–0.1]). We also searched for signals during the X-ray flaring activity of GRB 210419A on minute time-scales in the image domain and found no emission, resulting in an intensity upper limit of $$0.57\, \text{Jy}\, \text{beam}^{-1}$$, corresponding to a constraint of ϵB ≲ 10−3. Our non-detection could imply that GRB 210419A was at a high redshift, there was not enough magnetic energy for low-frequency emission, or the radio waves did not escape from the GRB environment. 
    more » « less